Gyrokinetic theory of turbulent acceleration of parallel rotation in tokamak plasmas.
نویسندگان
چکیده
A mechanism for turbulent acceleration of parallel rotation is discovered using gyrokinetic theory. This new turbulent acceleration term cannot be written as a divergence of parallel Reynolds stress. Therefore, turbulent acceleration acts as a local source or sink of parallel rotation. The physics of turbulent acceleration is intrinsically different from the Reynolds stress. For symmetry breaking by positive intensity gradient, a positive turbulent acceleration, i.e., cocurrent rotation, is predicted. The turbulent acceleration is independent of mean rotation and mean rotation gradient, and so constitutes a new candidate for the origin of spontaneous rotation. A quasilinear estimate for ion temperature gradient turbulence shows that the turbulent acceleration of parallel rotation is explicitly linked to the ion temperature gradient scale length and temperature ratio Ti0/Te0. Methods for testing the effects of turbulent parallel acceleration by gyrokinetic simulation and experiment are proposed.
منابع مشابه
Gyrokinetic prediction of microtearing turbulence in standard tokamaks
Related Articles Understanding disruptions in tokamaks Phys. Plasmas 19, 055703 (2012) Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields Phys. Plasmas 19, 056117 (2012) Theory of tokamak disruptions Phys. Plasmas 19, 058101 (2012) Applying alpha-channeling to mirror machines Phys. Plasmas 19, 055702 (2012) Intrinsic rotation with gyroki...
متن کاملCollisions in Global Gyrokinetic Simulations of Tokamak Plasmas Using the f Particle-In-Cell Approach: Neoclassical Physics and Turbulent Transport
The present work takes place within the general context of research related to the development of nuclear fusion energy. More specifically, this thesis is mainly a numerical and physical contribution to the understanding of turbulence and associated transport phenomena occuring in tokamak plasmas, the most advanced and promising form of magnetically confined plasmas. The complexity of tokamak p...
متن کاملIon stochastic heating by obliquely propagating magnetosonic waves
Related Articles Transport formulation of the gyrokinetic turbulence Phys. Plasmas 19, 062504 (2012) Convective cell generation by kinetic Alfvén wave turbulence in the auroral ionosphere Phys. Plasmas 19, 062901 (2012) Continuum limit of electrostatic gyrokinetic absolute equilibrium Phys. Plasmas 19, 062304 (2012) Magnetoplasma waves on the surface of a semiconductor nanotube with a superlatt...
متن کاملGyrokinetic microtearing turbulence.
The nonlinear dynamics of microtearing modes in standard tokamak plasmas are investigated by means of ab initio gyrokinetic simulations. The saturation levels of the magnetic field fluctuations can be understood in the framework of a balance between (small poloidal wave number) linear drive and small-scale dissipation. The resulting heat transport is dominated by the electron magnetic component...
متن کاملAssessment of turbulent beam ion redistribution in tokamaks through velocity space-dependent gyrokinetic analyses
We present the interface between a gyrokinetic code and a guiding centre code dedicated to the study of fast ion turbulent transport. A set of velocity space-dependent (kinetic) transport quantities, representing the link between the two codes, is presented. The code suite is applied to DEMO and TCV plasmas. While negligible alpha particle transport is observed for both tokamaks, important beam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 26 شماره
صفحات -
تاریخ انتشار 2013